химический каталог




Высаливание ВМС. Студни. Явление защиты

Автор О.С.Гамеева

При определенных условиях в растворах ВМС, так же как и у золей, можно наблюдать укрупнение частиц, т. е. процесс коагуляции. Однако в отличие от золей период скрытой коагуляции растворов ВМС весьма продолжителен, иногда даже вовсе не переходящий в явную форму. Явная коагуляция раствора ВМС может протекать в форме высаливания или застудневания.

Высаливание - это выделение в осадок растворенного вещества, вызываемое добавкой к раствору больших количеств нейтральных солей. Если для коагуляции золей требуется ничтожно малое количество электролитов (миллимоль/л), то для высаливания ВМС расходуются очень большие количества солей (нередко концентрация достигает насыщения). Высаливание из растворов ВМС существенно отличается от коагуляции золей электролитами. В данном случае процесс не связан с понижением дзета-потенциала до критического, поскольку у растворов ВМС он почти не играет никакой роли.

Высаливание наступает вследствие нарушения сольватной связи между макромолекулами ВМС и растворителем, т. е. вследствие десольватации частиц. Это приводит к постепенному понижению растворимости ВМС и в конечном итоге к выпадению его в осадок. Высаливающее действие электролита проявляется тем сильнее, чем больше степень сольватации его ионов, т. е. чем выше его способность десольватировать макромолекулы ВМС. Коагуляцию растворов ВМС вызывают оба иона прибавленного электролита. Высаливающим действием обладают не только соли, но также все вещества, способные взаимодействовать с растворителем и понижать растворимость ВМС. Например, хорошо высаливают желатину из водных растворов ацетон и спирт, так как они легко связываются с водой и тем самым дегидратируют частицы желатины.

По высаливающему действию ионы электролитов располагаются в лиотропные ряды:
ряд анионов: 

C2O42-  >  SO42-  >  СН3СОО-  >  CI-  >  Br -  >  I-  >  CNS-


ряд катионов: 

Li+  >  Na+  >  К+  >  Rb+  >  Cs+  >  Mg2+  >  Ca2+  >  Sr2+  >  Ba2+ 

Высаливающее действие ионов в приведенных рядах усиливается справа налево. Часто осаждение полимера проводят, приливая к раствору жидкость, в которой он менее растворяется ("осадитель" или "нерастворитель"). Чем ниже растворимость ВМС в данном растворителе, тем быстрее и полнее происходит высаливание. У одного и того же полимера растворимость зависит от длины макромолекул. Чем больше их длина и молекулярная масса, тем меньше растворимость и легче происходит высаливание частиц. Это свойство используют при анализе полидисперсных систем. Постепенно прибавляя к раствору возрастающие количества осадителя, можно выделить из раствора отдельные фракции частиц. Высаливание применяют во многих технологических процессах (в мыловарении, при выделении красок и канифоли, в производстве искусственных волокон).

 Часто явная коагуляция растворов ВМС происходит в форме застудневания. При этом осадка не образуется, а вся система, утрачивая текучесть, переходит в особое промежуточное состояние, называемое гелем или студнем. Застудневание может происходить:
1) в результате проявления между сближающимися частицами сил межмолекулярного притяжения;
2) за счет объединения макромолекул, происходящего под влиянием возникающих между ними водородных связей;
3) под воздействием добавок посторонних веществ, способствующих образованию дополнительных химических связей ("сшивающих мостиков") между макромолекулами ВМС. Процесс сцепления макромолекул во всех случаях приводит к образованию единого агрегата - сплошной структурной сетки из частиц ВМС, захватывающей полностью весь объем растворителя. Образовавшаяся система не расслаивается на две фазы и довольно прочна по отношению к механическим воздействиям. 

Студни (гели) могут образовывать также коллоидные частицы таких веществ, как Si02, TiO2, Sn02, V205 и др. 

В зависимости от природы веществ, образующих студни, различают хрупкие гели и эластичные гели (студни). Хрупкие гели построены из жестких частиц. Типичным представителем является гель кремниевой кислоты. При высушивании хрупкие гели почти не изменяют свой объем, но приобретают большую хрупкость и пористость. 

Благодаря сильно развитой поверхности сухие хрупкие гели являются хорошими адсорбентами (силикагель). При внесении в любую жидкость сухие хрупкие гели впитывают ее, не изменяя своего объема, поэтому их называют ненабухающими. Эластичные гели, или студни, образованные гибкими цепными макромолекулами желатины, агар-агара, каучука и других полимеров, по свойствам значительно отличаются от хрупких гелей. Благодаря гибкости целей в пространственной сетке такие студни не теряют своей эластичности при высушивании. Они способны поглощать не любую жидкость (каучук - органические растворители, желатина - воду). Поглощение жидкости сопровождается увеличением массы и объема ВМС, т. е. набуханием. Набухание может иногда переходить в полное растворение ВМС. 

На процесс застудневания влияют концентрация ВМС в растворе, температура, примеси других веществ, особенно электролитов. С повышением концентрации ВМС уменьшаются расстояния между частицами и скорость застудневания увеличивается. Для каждой системы при данной температуре существует некоторая концентрация, ниже которой она не застудневает. Так, для желатины при комнатной температуре предельной концентрацией является 0,7-0,9%, для агар-агара - 0,2%. С понижением температуры уменьшается скорость движения макромолекул, вследствие чего облегчается процесс их сцепления, приводящий к застудневанию. Эти факторы используют на практике при изготовлении пищевых студней, желе и других изделий. 

Электролиты влияют на процесс застудневания. По своему действию анионы можно расположить в ряд застудневания, аналогичный ряду высаливания. На скорость застудневания белков (как и на процесс высаливания их) влияет рН среды. Наибольшую скорость эти процессы имеют в изоэлектрической точке (при дзета = 0). 

Благодаря большому содержанию жидкости в структуре студней в них возможны процессы диффузии и протекание химических реакций. Так, например, в водных студнях, содержащих 95-99% воды от их массы, диффузия происходит почти с такой же скоростью, как и в чистой воде. Это свойство используют в электрохимии для приготовления удобных в работе электролитических мостиков из студня агар-агара с добавкой КСl. Однако диффузия в студнях все же отличается от диффузии в жидкостях, так как в студнях отсутствует перемешивание и невозможно образование конвекционных потоков, которые почти всегда имеют место в жидких растворах. Это обусловливает своеобразность протекания химических реакций в студнях. Так, в разных участках студня различные реакции могут протекать независимо одна от другой. Если один из продуктов реакции является твердым труднорастворимым веществом, то в студне наблюдается периодическое осаждение этого вещества (кольца Лизеганга) вместо образования осадка по всему объему.

 Студни и студнеобразование играют большую роль в жизни животных и растений. Студнями являются мясо, творог, простокваша, мармелад, кисель и многие другие пищевые продукты. Студнеобразование и студни находят широкое применение в производстве товаров народного потребления, например в производстве вискозного, ацетатного шелка, искусственной кожи, резиновых изделий, столярного клея и др. 

Обладая большой устойчивостью по отношению к действию электролитов, растворы ВМС, будучи прибавлены в определенном количестве к золям, значительно повышают их агрегативную устойчивость. Это явление получило название защитного действия или защиты. Так, например, добавка к красному золю золота небольшого количества желатины во много раз повышает устойчивость его против коагулирующего действия электролитов (сильно возрастает порог коагуляции). Защищенный золь может существовать в растворе в больших концентрациях, чем незащищенный. В некоторых случаях защищенные золи даже становятся обратимыми. Примером может служить медицинский препарат протаргол (защищенный золь серебра). После удаления растворителя он превращается в сухой коллоидный порошок, растворимый затем в любых количествах воды. 

Защитное действие растворов ВМС зависит от природы вещества и природы защищаемого им золя. Количественно оно характеризуется так называемым золотым числом, которое выражается минимальным числом миллиграммов сухого ВМС, которое предохраняет 10 см3 красного гидрозоля золота от перемены окраски при добавлении к нему 1 см3 10%-ного раствора хлорида натрия. Защитное действие различных ВМС весьма различно. Особенно высоким защитным действием обладают белки. Явление защиты играет важную роль в ряде физиологических процессов. Так, например, защитные вещества белкового характера удерживают в мелкодисперсном состоянии находящиеся в крови труднорастворимые фосфат и карбонат кальция. При некоторых заболеваниях содержание защитных веществ в крови понижается, что приводит к выпадению указанных солей в осадок (образование камней в почках, печени, отложение солей на суставах). Многие лекарственные вещества являются защищенными золями (колларгол, протаргол и др.). О применении ВМС для стабилизации суспензий. В фотографии используют светочувствительные коллоидные препараты бромида серебра, защищенные желатиной. Широко применяется желатина как защитное вещество в пищевой промышленности.

Смотри так же по теме особенности растворов высокомолекулярных соединений, явление набухания ВМС, вязкость растворов ВМС и определение молекулярной массы высокомолекулярных соединений.


[каталог]  [статьи]  [доска объявлений]    [обратная связь]

 

 

Реклама
купить билеты ну погоди квест шоу
ремонт холодильников на дому вднх
наклейка на машину подруга ведьмы
кровать атлантико со стразами

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей среды и их действие в локальных и глобальных масштабах. Важный аспект книги заключается в раскрытии механизма действия природных геохимических процессов в разных масштабах времени и влияния на них человеческой деятельности. Показываются химический состав, происхождение и эволюция земной коры, океанов и атмосферы. Детально рассматриваются процессы выветривания и их влияние на химический состав осадочных образований, почв и поверхностных вод на континентах. Для студентов и преподавателей факультетов биологии, географии и химии университетов и преподавателей средних школ, а также для широкого круга читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. В первой части изложены основы химии и технологии лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во второй части книги изложены основы химии и технологии скандия, натрия, лантана, лантаноидов, германия, титана, циркония, гафния. В третьей части книги изложены основы химии и технологии ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В технологии каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений из концентратов и отходов производства, современные методы разделения и очистки элементов. Пособие составлено по материалам, опубликованным из советской и зарубежной печати по 1972 год включительно.

 

 


Компания Зимний лес предлагает лафет из зимнего леса.
Рейтинг@Mail.ru Rambler's Top100

Copyright © 2001-2012
(13.12.2017)