![]() |
|
|
Доклад на тему - медьОбщее содержание меди в земной коре сравнительно невелико (0,01 вес %), однако она чаще, чем другие металлы, встречается в самородном состоянии, причем самородки меди достигают значительной величины. Этим, а также сравнительной лёгкостью обработки меди объясняется то, что она ранее других металлов была использована человеком. В настоящее время медь добывают из руд. Последние, в зависимости от характера входящих в их состав соединений, подразделяют на оксидные и сульфидные. Сульфидные руды имеют наибольшее значение, поскольку из них выплавляется 80% всей добываемой меди. Важнейшими минералами, входящими в состав медных руд, являются: халькозин или медный блеск - Cu2S; халькопирит или медный колчедан - CuFeS2; малахит - (CuOH)2CO3. Медные руды, как правило содержат большое количество пустой породы, так что непосредственное получение из них меди экономически невыгодно. Поэтому в металлургии меди особенно важную роль играет обогащение (обычно флотационный метод), позволяющее использовать руды с небольшим содержание меди. Выплавка меди их её сульфидных руд или концентратов представляет собою сложный процесс. Обычно он слагается из следующих операций:
В ходе обжига большая часть сульфидов пpимесных элементов превращается в оксиды. Так, главная примесь большинства медных руд, пирит - FeS2 - превращается в Fe2O3. Газы, отходящие при обжиге, содержат SO2 и используются для получения серной кислоты. Получающиеся в ходе обжига оксиды железа, цинка и других примесей отделяются в виде шлака при плавке. Основной же продукт плавки - жидкий штейн (Cu2S с примесью FeS) поступает в конвертор, где через него продувают воздух. В ходе конвертирования выделяется диоксид серы и получается черновая или сырая медь. Для извлечения ценных спутников (Au, Ag, Te и дp.) и для удаления вредных примесей черновая медь подвергается огневому, а затем электролитическому рафинированию. В ходе огневого рафинирования жидкая медь насыщается кислородом. При этом примеси железа, цинка, кобальта окисляются, переходят в шлак и удаляются. Медь же разливают в формы. Получающиеся отливки служат анодами при электролитическом рафинировании. Чистая медь — тягучий вязкий металл светло-розового цвета, легко прокатываемый в тонкие листы. Она очень хорошо проводит тепло и электрический ток, уступая в этом отношении только серебру. В сухом воздухе медь почти не изменяется, так как образующаяся на её поверхности тончайшая плёнка оксидов придает меди более тёмный цвет и также служит хорошей защитой от дальнейшего окисления. Но в присутствии влаги и диоксида углерода поверхность меди покрывается зеленоватым налётом гидpоксокаpбоната меди - (CuOH)2CO3. При нагревании на воздухе в интервале температур 200-375oC медь окисляется до черного оксида меди(II) CuO. При более высоких температурах на её поверхности образуется двухслойная окалина: поверхностный слой представляет собой оксид меди(II), а внутренний - красный оксид меди(I) - Cu2O. Медь широко используется в промышленности из-за :
Около 40% меди идёт на изготовление различных электрических проводов и кабелей. Широкое применение в машиностроительной промышленности и электротехнике нашли различные сплавы меди с другими веществами. Наиболее важные из них являются латуни (сплав меди с цинком), медноникеливые сплавы и бронзы. Латунь содержит до 45% цинка. Различают простые латуни и специальные. В состав последних, кроме меди и цинка, входят другие элементы, например, железо, алюминий, олово, кремний. Латунь находит разнообразное применение - из неё изготовляют трубы для конденсаторов и радиаторов, детали механизмов, в частности - часовых. Некоторые специальные латуни обладают высокой коррозийной стойкостью в морской воде и применяются в судостроении. Латунь с высоким содержанием меди - томпак - благодаря своему внешнему сходству с золотом используется для ювелирных и декоративных изделий. Медноникеливые сплавы и бронзы также подразделяются на несколько различных групп — по составу других веществ, содержащихся в примесях. И в зависимости от химических и физических свойств находят различное применение. Все медные сплавы обладают высокой стойкостью против атмосферной коррозии. В химическом отношении медь — малоактивный металл. Однако с галогенами она реагирует уже при комнатной температуре. Например, с влажным хлором она образует хлорид - CuCl2. При нагревании медь взаимодействует и с серой, образуя сульфид - Cu2S. Hаходясь в ряду напряжения после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислоты на медь не действуют. Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей: 2Cu + 4HCl + O2 —> 2CuCl2 + 2H2O Летучие соединения меди окрашивают несветящееся пламя газовой горелки в сине-зелёный цвет. Соединения меди(I) в общем менее устойчивы, чем соединения меди(II), оксид Cu2O3 и его производные весьма нестойки. В паре с металлической медью Cu2O применяется в купоросных выпрямителях переменного тока. Оксид меди(II) (окись меди) - CuO - черное вещество, встречающееся в природе (например в виде минерала тенеpита). Его легко можно получит прокаливанием гидpоксокаpбоната меди(II) (CuOH)2CO3 или нитрата меди(II) - Cu(NO3)2. Пpи нагревании с различными органическими веществами CuO окисляет их, превращая углерод в диоксид углерода, а водород - в воду и восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементарном анализе органических веществ для определения содержания в них углерода и водорода. Гидpоксокаpбонат меди(II) - (CuOH)2CO3 - встречается в природе в виде минерала малахита, имеющего красивый изумpудно-зелёный цвет. Применяется для получения хлорида меди(II), для приготовления синих и зелёных минеральных красок, а также в пиротехнике. Сульфат меди(II) - CuSO4 - в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях. Смешанный ацетат-аpсенит меди(II) - Cu(CH3COO)2• Cu3(AsO3)2 - применяется под названием "парижская зелень" для уничтожения вредителей растений. Из солей меди вырабатывают большое количество минеральных красок, разнообразных по цвету: зелёных, синих, коричневых, фиолетовых и черных. Все соли меди ядовиты, поэтому медную посуду лудят - покрывают внутри слоем олова, чтобы предотвратить возможность образования медных солей. Характерное свойство двухзарядных ионов меди --- их способность соединяться с молекулами аммиака с образованием комплексных ионов. Медь принадлежит к числу микроэлементов. Такое название получили Fe, Cu, Mn, Mo, B, Zn, Co в связи с тем, что малые количества их необходимы для нормальной жизнедеятельности растений. Микроэлементы повышают активность ферментов, способствуют синтезу сахара, крахмала, белков, нуклеиновых кислот, витаминов и ферментов. Микроэлементы вносят в почву вместе с удобрениями. Удобрения, содержащие медь, способствуют росту растений на некоторых малоплодородных почвах, повышают их устойчивость против засухи, холода и некоторых заболеваний. |
[каталог] [статьи] [доска объявлений] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|