![]() |
|
|
Высокомолекулярные соединения15 000° С, и при движении в плотных слоях атмосферы, когда поверхность ракеты в результате трения о воздух накаляется до нескольких тысяч градусов. В таких условиях любой металл просто испарился бы, поэтому наружные части металлической конструкции покрываются термоизоляцией, изготовленной из наполненных полимерных материалов. При этом решающее значение имеют высокая теплоемкость и низкая теплопроводность полимера, поглощение и расход тепловой энергии на его пиролиз, а также образование предохранительной газовой прослойки на его поверхности. В результате полимер, сам разрушаясь слой за слоем, защищает металлические стенки ракеты в течение необходимого времени. СТАРЕНИЕ ПОЛИМЕРОВ И МЕТОДЫ ИХ ЗАЩИТЫ [28, 36] Старение представляет собой процесс самопроизвольного изменения свойств полимеров (прочности, эластичности, твердости и т. д.), протекающий при хранении или эксплуатации полимеров и материалов на их основе. Старение является, прежде всего, результатом химических процессов, обусловленных действием кислорода, озона (небольшие количества его всегда находятся в атмосфере), нагревания, света, радиоактивного излучения, механической деформации и т. д., которые приводят к деструкции и структурированию. Из перечисленных факторов решающее значение имеет действие кислорода, остальные играют роль инициаторов окисления. Старение возможно также за счет испарения из полимерной композиции летучих компонентов (ингибиторы, пластификаторы), а также релаксации цепей или их участков у ориентированных материалов. На рис. 199 показано влияние окислительного старения на механические свойства вулканизатов. На практике старение обычно происходит под влиянием различных одновременно действующих факторов. Например, на открытом воздухе (атмосферное старение) окислительное старение сопровождается световым, на световое старение накладывается тепловое, так как действие света приводит к разогреванию полимера. Ввиду большой чувствительности термомеханического метода к незначительным структурным изменениям он очень удобен для оценки и сопоставления устойчивости различных материалов к старению (рис. 200). Уменьшение деформации со временем показывает, что деструкция полимера сопровождается структурированием. Изделия, эксплуатируемые па открытом воздухе в ненапряженном состоянии, подвергаются преимущественно световому старению, при этом у каучука изменяется модуль высокоэластичности, растет жесткость, повышается хрупкость поверхностного слоя, образуется сетка из трещин и иногда появляется липкость; кроме' того, меняются разрывная прочность и окраска резин. Аналогичное явление наблюдается при тепловом старении. Старение под влиянием радиоактивного облучения приводит к изменению плотности, хода термомеханической кривой, Р,м/СМГ механических и диэлектрических свойств, а для кристаллических полимеров — к падению процента кристалличности. Увеличение прочности и теплостойкости полиэтилена при облучении используется в производстве разновидности этого полимера — ир-ратена [37] (США); однако при слишком больших дозах облучения, особенно в присутствии кислорода, деструкция начинает преобладать над сшиванием, что приводит к падению прочности, увеличению хрупкости и общему ухудшению свойств материала. В близкой связи с процессами старения находятся явления утомления и усталости полимеров. Утомление, наступающее в результате многократной деформации — динамическое утомление или длительного нахождения полимера в напряженном состоянии — статическое утомление, вызывает постепенное изменение свойств материала, называемое усталостью. Эти изменения могут вначале иметь как обратимый, так и необратимый характер, но, накапливаясь, всегда приводят к необратимым явлениям, которые заканчиваются разрушением полимерного образца. Утомляемость чаще всего измеряется числом циклов (N) деформации, приводящим к разрушению полимерного материала (выносливость); приложенная при этом нагрузка представляет собой усталостную прочность, которая снижается с увеличением N. При утомлении большое значение имеют различные механохи-мические процессы, которые усиливаются в присутствии кислорода, света и других агентов, вызывающих деструкцию. Важную роль играют ориентационные явления, уплотнение и разрыхление структуры в результате переупаковки макромолекул. Деформация полимеров прежде всего приводит к разрыву полимерных цепей или к ускорению прочих возможных видов деструкции. Возникающие при этом свободные радикалы инициируют химические процессы (окисление и др.), которые главным образом и приводят к изменению механических свойств при утомлении Эти процессы, взаимно влияя друг на друга, ускоряются механическими воздействиями. Изменение скорости химических реакций при деформации происходит вследствие снижения ?а и повышения вероятности столкновения активных групп. Механическое напряжение создает пространственную направленность химических процессов и изменяет структуру полимера (химическая текучесть), вследствие чего появляется анизотропия 80100120М160180 ' |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|