![]() |
|
|
Высокомолекулярные соединениязи, так как она равняется отношению количества успешных случаев (разрыв связи) к общему числу случаев. Хотя деструкция часто является нежелательной побочной реакцией, ее нередко проводят сознательно для частичного снижения степени полимеризации, чем облегчаются переработка и практическое использование полимеров. Например, в производстве лаков на основе эфиров целлюлозы, когда непосредственное растворение этих веществ дает слишком вязкие растворы, неудобные для нанесения покрытий, исходную целлюлозу подвергают предварительной деструкции. Частичная деструкция (пластикация) натурального каучука на вальцах облегчает его переработку в резиновые изделия. Реакция деструкции используется для установления химического строения полимеров, для получения ценных низкомолекулярных веществ из природных полимеров (гидролитическая деструкция целлюлозы или крахмала в глюкозу, белков в аминокислоты), при синтезе привитых и блок-сополимеров и т. д. Изучение деструкции дает возможность установить, в каких условиях могут перерабатываться и эксплуатироваться полимеры; оно позволяет разработать эффективные методы защиты полимеров от различны* воздействий, найти способы получения полимеров, которые мало чувствительны к деструкции, и т. д. Знание механизма и закономерностей деструкции дает возможность усилить или ослабить ее по желанию в зависимости от поставленной задачи. Химическая деструкция лучше всего изучена и наиболее часто наблюдается у гетероцепных полимеров; она протекает избирательно за счет разрыва связи между углеродом и гетероатомом. Конечным продуктом реакции является мономер. Карбоцепные полимеры, макромолекулы которых не содержат кратной связи, обычно мало склонны к химической деструкции, так как связь С—С устойчива к наиболее ходовым реагентам. Только при очень жестких условиях или наличии в макромолекуле групп, снижающих прочность связей С—С в цепи полимера, происходит химическая деструкция карбоцепных высокомолекулярных соединений. Непредельные карбоцепные полимеры, например натуральный каучук, очень чувствительны к различным окислителям, но в этом случае деструкция носит менее селективный характер. Поэтому окислительную деструкцию обычно не относят к химической деструкции. В связи с проблемой охраны окружающей среды и все более широким применением полимеров в областях, где они находятся в контакте с живыми организмами, за последние годы значительно возрос интерес к вопросу о биологической деструкции [24], протекающей под действием микроорганизмов, ферментов и т. д. Деструкция под влиянием физических воздействий не обладает избирательным характером ввиду близости энергетических параметров связей цепи. Механизм ее мало зависит от вида энергии, вызывающей расщепление макромолекулы. По характеру продуктов распада различают деструкцию по закону случая и деполимеризацию. Первый вид деструкции в известной степени напоминает процесс, обратный реакции поликонденсации; при этом образующиеся осколки велики по сравнению с размером мономерного звена. При деполимеризации, вероятно, имеет место последовательный отрыв мономеров от конца цепи, т. е. реакция, обратная росту цепи при полимеризации. Эти два вида деструкции могут протекать раздельно или одновременно. Кроме того, возможна деструкция по слабой связи, находящейся посередине макромолекулы. При деструкции по закону случая молекулярная масса полимера обычно падает очень быстро, а при деполимеризации — значительно медленнее. У полиметилметакрилата с молекулярной массой 44 ООО, например, степень полимеризации остаточного продукта практически не меняется до тех пор, пока деполимеризация не прошла на 80 % • Ценные сведения о виде деструкции дает изучение состава и соотношения продуктов реакции методами хроматографии, полярографии, масс-спектрометрии и т. д. Особенно удобна для выполнения подобных исследований пиролитическая газовая хроматография [25], где в одном приборе совмещаются пиролиз полимера и хроматографический анализ летучих продуктов деструкции. Аналогичными методами можно пользоваться в случае других видов деструкции. Полученные при этом пиролитические спектры (пирограммы) позволяют делать выводы о термической устойчивости полимеров, механизме их деструкции и эффективности ингибиторов деструкции. Сопоставляя эти спектры с пирограммами известных объектов, можно идентифицировать высокомолекулярные соединения, отличить сополимер от смеси гомополимеров, в известной степени судить о составе и строении макромолекулы. Следует отметить, что при эксплуатации полимерные материалы обычно подвергаются одновременному действию различных факторов, вызывающих деструкцию. Например, термоокислительная деструкция возбуждается совместным действием тепла и кислорода, фотохимическая деструкция сопровождается гидролизом и окислением и т. д. При кинетических исследованиях деструкции обычно определяют зависимость среднечисловой молекулярной массы от времени реакции, поскольку изменение числа молекул в единице времени пропорционально количеству разорванных связей. Ср |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|