![]() |
|
|
Избранные методы синтеза органических соединенийметилиодида и других галогенидов: mpem-BuU + PhCH2Cl трет -BuCH2Ph 75% Me3SiCl 50 % N CH2Li CH2SiMe3 Описать взаимодействие литийорганических соединений с ал-килгалогенидами в рамках единого механизма не представляется возможным. В зависимости от строения субстрата и условий реакции механизм может быть гетеролитическим SV2 типа или радикальным. Так, реакции аллил- и бензиллития со вторичными алкил-бромидами протекают с хорошими выходами продуктов и с высокой степенью обращения конфигурации атома углерода, у которого происходит замещение атома брома: Et I PhCH.Li + Меш<и..С IT Br Et / PhCH.-C"'"uMe выход 58 % инверсия 100 % Однако имеются данные, указывающие на то, что в реакции простых литийорганических соединений с алкилгалогенидами участвуют радикалы. Промежуточно образующиеся радикалы были обнаружены методами ЭПР и химической поляризации ядер. Процесс может включать одноэлектронный перенос от карбаниона к галогеноалкилу с образованием алкильного радикала (R1*) и анион-радикала (R2X*). Последний легко распадается на ион галогена и алкильный радикал. Алкильные радикалы объединяются, давая желаемый продукт, а также продукты диспропорционирования и симметричные продукты сочетания. Неактивированные винил- и арилгалогениды имеют достаточно низкую реакционную способность для проведения алкилирования с помощью литийорганических соединений. Если алкилирование и идет, то не как нуклеофильное замещение, а по механизму присоединения - элиминирования или через промежуточное образование дегидробензола: Hal RLi Hal Li H20 Продукты сочетания с арилгалогенидами могут также возникать путем первоначального замещения галогена металлом с последующим арилированием образованного алкилгалогенида. Так, если бутиллитий добавляют к раствору 1 -бромонафталина и реакционную смесь через 20 мин обрабатывают диоксидом углерода, то получают нафтойную-1 кислоту, однако, если смесь кипятят 36 ч, то получают 1-бутил нафталин: PhCH=CHBr 2 " '» PhCH=CHPh 90 % Кроме галогенов замещению с участием литийорганических соединений может подвергаться и ряд других групп. Среди реакций этого типа широкое распространение получили лишь реакции с ал-килсульфатами (в частности с диметилсульфатом): (Me3Si)2CBrLi Me2S°4 - (Me3Si)2CBrMe 88 % Как можно было заметить из вышеприведенных примеров, строение литийорганических соединений не имеет большого значения для протекания реакций алкилирования. Арил- и виниллитие-вые реагенты удается алкилировать алкилиодидами и бромидами. Тем не менее делокализация отрицательного заряда карбаниона облегчает ход реакции. Этот эффект, в частности, наблюдается при использовании литийорганических производных 1,3-дитиана, стабилизация отрицательного заряда за счет атомов серы в котором отмечена выше. Такие соединения легко алкилируются, при этом после гидролиза появляется маскированная образованием дитио-ацеталя карбонильная группа. В целом открытие данной реакции позволило превращать доступный электрофильный синтон RC+ Н(ОН), соответствующий карбонильному соединению, в недоступный ранее нуклеофильный синтон, RC~=0 (обращение полярности синтона). На этом основан общий метод синтеза альдегидов и кетонов путем алкилирования их простейших представителей: К рассматриваемому типу реакций можно отнести и раскрытие кольца циклических простых эфиров, особенно легко протекающее с эпоксидами. Реакция сопровождается инверсией конфигурации менее пространственно затрудненного атома углерода и протекает по механизму внутримолекулярного S^2 замещения: Ph-CH-CH? PhLi » PhCH?CHPh 70 % \ / 2 2 I О ОН Me Me ОН 92 % Трудности при реакции алкилирования часто удается преодолеть использованием енолятов лития. При алкилировании несимметричного кетона обычно встает вопрос о направлении реакции. Использование енолятов лития позволяет избирательно алкилиро-вать желаемое положение. Региоселективность может быть достигнута двумя путями. Первый состоит в том, что из исходного кетона предварительно действием подходящего реагента получают енол-ацетат или силиловый эфир. Последние образуются в виде смеси изомеров, в которой один из изомеров обычно преобладает. Он без труда может быть выделен, а затем обработкой 2 моль метиллития превращен в соответствующий енолят лития. Последующее алкилирование енолята позволяет получить а-алкилкетон определенного строения (из более замещенного енолята получают более замещенный кетон, из менее замещенного енолята - менее замещенный кетон): Me о Me, Si CI ГЛИМ Me Li ГЛИМ Me Li RI Me ГЛИМ Второй способ алкилирования использует особенности еноли-зации кетонов под действием оснований типа ДИПАЛ. Из двух возможных енолятов в этом случае образуется так называемый кинетический енолят (наименее замещенный). Алкилирование этого енолята позволяет получить менее замещенный а-алкилкетон: О О" О RI ДИПАЛ ТГФ,-78 °C 98 % ДИПАЛ RHal MeCOCH2COOEt Особенности алкилирования /?-дикарбонильных |
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
Скачать книгу "Избранные методы синтеза органических соединений" (1.39Mb) |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|