![]() |
|
|
Биохимия. Химические реакции в живой клетке. Том 2гается при связывании субстрата, что группу не удается вьшвить с помощью 'Кривой зависимости lg Vmax от рН. Таким образом, экспериментальные данные ие позволяют окончательно решить вопрос о том, участвует ли в работе мутаротазы ионогенная группа, соответствующая на схеме (6-79) группе —ВН+. 6. Ковалентный катализ Боковые группы определенных аминокислот молекулы фермента могут не только участвовать в кислотно-основном катализе, но и вовлекаться в образование ковалентных связей с молекулами субстрата. Это явление называют ковалентным катализом или, поскольку в нем чаще всего принимают участие основные группы, нуклеофильным катализом. Ковалентный катализ характерен для ферментов, катализирующих реакции нуклеофильного замещения; ряд типичных примеров такого рода обсуждается в гл. 7. В ковалентном катализе часто участвуют кофер-менты (см. гл. 8). 7. Эффекты сближения и ориентации Несмотря на большие успехи, достигнутые энзимологией, и тот факт, что благодаря рентгеноструктурным исследованиям мы знаем структуру некоторых ферментов, в действии этих удивительных катализаторов остается еще много загадочного. Ни кислотно-основный, ни ковалентный катализ, по-видимому, не могут объяснить огромного увеличения скорости реакции, которое наблюдается, когда в работу вступают ферменты. Какие же другие факторы обусловливают высокую скорость катализируемых ферментами реакций? Одно из самых первых предположений состояло в том, что ферменты просто сближают реагенты и удерживают их в таком 'положении достаточно долго, чтобы реакционноспособные группы могли столкнуться и в конце концов прореагировать. Интуитивно ясно, что фактор сближения должен играть очень важную роль, но ранние попытки количественно оценить этот эффект приводили к заключению, что роль его невелика. Позднее Пейдж и Дженкс показали, что проведенные оценки неверны и что исключительно за счет уменьшения энтропии двух реагентов при их сближении и удерживании на поверхности молекулы фермента можно ожидать увеличения скорости в 103 и более раз [60, 61]. Поскольку энтропия при связывании субстрата уменьшается, то становится ясным, что энтальпия этого процесса должна быть высока, а в таком случае связывание субстратов ферментом уже само по себе во многом °пределяет движущую силу катализа. Подобная идея была впервые высказана Вестхеймером [62], который считал, что ферменты за счет способности связывать субстрат создают как бы энтропийную ловушку. Потеря энтропии поступательного и вращательного движения, которая, по оценкам Пейджа и Дженкса, составляет от —160 до —210 кДж• моль-1 • град-1, перекрывает «неблагоприятную» энтропию активации, характерную для бимолекулярных реакций. (6-90) Соединение типа В последние годы больше внимания уделялось вопросу о том, насколько точной должна быть ориентация субстратов в случае быстрых реакций [63, 63а], и был исследован ряд модельных реакций, например спонтанное образование внутреннего эфира (лактона), протекающее с отщеплением воды: ——-—, —_* Триалкильный замок" реагирует гораздо быстрее из-за существенных конформационных ограничений [64, 65]: скорость реакции в 10й раз выше скорости реакции (6-90), вероятно, вследствие того, что создаваемые ограничения приводят к существенному повышению частоты столкновения —СООН- и —ОН-групп. Три метильные группы сближаются и образуют триалкиль-ный «замок». Эти результаты позволяют полагать, что ориентационные эффекты могут играть большую роль в ферментативном катализе. Согласно другой концепции, объясняющей высокую скорость ферментативных реакций, ферменты способны индуцировать напряжение, или «искажение» в молекуле субстрата, приводящее к ослаблению специфических связей (см. гл. 7, разд. В, 4, а, посвященный лизоциму). Напряжение может либо сопровождаться конформационным изменением в самой белковой молекуле, либо возникать в результате подобного кон-формационного изменения. Еще один факт, который необходимо принять во внимание, состоит в том, что некоторые реакции протекают быстрее в среде с низкой диэлектрической постоянной, чем в воде. Возможно, полярные группы субстрата дегидратируются при связывании с активным центром фермента, и это приводит к повышению их реакционной способности. У многих ферментативных реакций образование переходного состояния сопровождается существенным изменением объема (W^). Возможно, эти изменения обусловлены в основном изменением степени гидратации групп, расположенных на поверхности молекулы фермента, и играют важную роль в ферментативном катализе [65а]. 8. Выводы Итак, суммируя, можно сказать, что высокая каталитическая способность ферментов обусловлена, во-первых, тем, что ферменты сближают субстраты и связывают их с активным центром в подходящей ориентации. Во-вторых, ферменты содержат кислотные и основные группы* ориентированные так, что становится возможным перенос протонов в. субстрате. В-третьих, определенные группы в молекуле фермента (особенно нуклеофильные) могут образовывать ковалентные связи с субстратом, что приводит к ф |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|