![]() |
|
|
Нанокристаллические материалы: методы получения и свойстваые строение и свойства малых атомных агрегаций представляют значительный научный и прикладной интерес, так как являются промежуточными между строением и свойствами изолированных атомов и массивного (объемного) твердого тела. Однако вопрос о том, как быстро нарастает и на каком этапе объединения атомов завершается формирование того или иного свойства массивного кристалла, до сих пор не решен. Не вполне ясно, каковы вклады поверхностных (связанных с границами раздела) и объемных (связанных с размером частиц) эффектов в свойства наноматериалов и как они могут быть разделены. Длительное время исследования в этом направлении проводились на изолированных кластерах, содержащих от двух атомов до нескольких сотен, малых частицах с размером более 1 нм и ультрадисперсных порошках. Переход от свойств изолированных наночастиц к свойствам массивных кристаллических веществ оставался белым пятном, так как отсутствовало промежуточное звено — компактное твердое тело с зернами нанометро-вого размера. Лишь после 1985 года, когда были созданы методы получения компактных нанокристаллических веществ, началось интенсивное заполнение отмеченного пробела в знаниях о твердом теле. Научный интерес к нанокристаллическому состоянию твердого тела в дисперсном или компактном виде связан прежде всего с ожиданием различных размерных эффектов на свойствах наночастиц и нанокристаллитов, размеры которых соизмеримы или меньше, чем характерный корреляционный масштаб того или иного физического явления или характерная длина, фигурирующие в теоретическом описании какого-либо свойства или процесса (например длина свободного пробега электронов, длина когерентности в сверхпроводниках, длина волны упругих колебаний, размер экситона в полупроводниках, размер магнитного домена в ферромагнетиках и т. д.). Прикладной интерес к наноматериалам обусловлен возможностью значительной модификации и даже принципиального изменения свойств известных материалов при переходе в нанокристаллическое состояние, новыми возможностями, которые открывает нанотехнология в создании материалов и изделий из структурных элементов нанометрового размера. Заметим, что термин "нанотехнология" относится к размерам именно структурных элементов. Автор постарался учесть как чисто научный фундаментальный интерес к проблеме наносостояния как особого неравновесного состояния вещества, так и прикладные аспекты этой проблемы, существенно важные для материаловедения и практического применения наноматериалов. Выполненный в книге совместный анализ структуры и свойств изолированных наночастиц и нанопорошков, с одной стороны, и компактных наноматериалов, с другой, показывает, что в целом уровень теоретического понимания и объяснения строения и свойств изолированных наночастиц заметно выше по сравнению с компактными нанокристаллическими материалами. Это, несомненно, следствие гораздо более длительного (практически с начала XX века) изучения высокодисперсных систем и нанокластеров по сравнению с компактными наноматериалами, которые стали объектом исследования лишь в последние 10—15 лет. Монография А. И. Гусева "Нанокристаллические материалы: методы получения и свойства" исключительно богата по фактическому содержанию и в предельно концентрированном виде включает в себя всю принципиально важную информацию о нанокристаллическом состоянии твердого тела. Это большой труд, в котором используется огромное число оригинальных исследований начиная с 1833 (!) года и вплоть до 1997 года включительно. При этом следует отметить, что более 80 % всех ссылок дано на работы, выполненные в последнее десятилетие, т. е. после 1988 года. Таким образом, монография А. И. Гусева действительно отражает современное состояние исследований нанокристаллического состояния и является существенным вкладом в науку о твердом теле. Она будет полезна и интересна для широкого круга специалистов в области физики конденсированного состояния, химии твердого тела и материаловедения. А.Л.Ивановский ВВЕДЕНИЕ Проблема получения тонкодисперсных порошков металлов, сплавов и соединений и сверхмелкозернистых материалов из них, предназначенных для различных областей техники, давно обсуждается в литературе. В последнее десятилетие интерес к этой теме существенно возрос, так как обнаружилось (в первую очередь на металлах), что уменьшение размера кристаллитов ниже некоторой пороговой величины может приводить к значительному изменению свойств [1—15]. Такие эффекты появляются, когда средний размер кристаллических зерен не превышает 100 нм, и наиболее отчетливо наблюдаются, когда размер зерен менее 10 нм. Изучение свойств сверхмелкозернистых материалов требует учета не только их состава и структуры, но и дисперсности. Поликристаллические сверхмелкозернистые материалы со средним размером зерен от 100—150 до 40 нм называют обычно субмикрокристаллическими, а со средним размером зерен менее 40 нм — нанокристаллическими. Отличие свойств малых частиц от свойств массивного материала известно уже достаточно давно и используется в разных областя |
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
Скачать книгу "Нанокристаллические материалы: методы получения и свойства" (1.38Mb) |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|