![]() |
|
|
Общая химиянии экзотермической реакции. Так, синтез аммиака представляет собой ' экзотермическую реакцию N2 + ЗН2 = 2NH3 + 92,4 кДж Поэтому при повышении температуры равновесие в системе Н2—N2—NH3 сдвигается влево — в сторону разложения аммиака, так как этот процесс идет с поглощением теплоты. Наоборот, синтез оксида азота(II) представляет собой эндотермическую реакцию: N2 + 02 = 2NO - 180,5 кДж Поэтому при повышении температуры равновесие в системе N2—02—N0 сдвигается вправо — в сторону образования N0. Закономерности, которые проявляются в рассмотренных примерах нарушения химического равновесия, представляют собою частные случаи общего принципа, определяющего влияние различных факторов на равновесные системы. Этот принцип, известный под названием принципа Ле Шателье, в применении к хи*( мическим равновесиям можно сформулировать так: | Если на систему, находящуюся в равновесии, оказать ка^ кое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшится, Действительно, при введении в систему одного из веществ, участвующих в реакции, равновесие смещается в сторону расхода этого вещества. Т1ри повышении давления оно смещается так, что давление в системе снижается; при повышении температуры равновесие смещается в сторону эндотермической реакции — температура в системе падает. Принцип Ле Шателье распространяется не только на химические, но и на различные физико-химические равновесия. Смещение равновесия при изменении условий таких процессов, как кипение, кристаллизация, растворение, происходит в соответствии с принципом Ле Шателье. 65. Факторы, определяющие направление протекания химических реакций. В предыдущих параграфах мы рассмотрели несколько примеров, показывающих, что при определенных условиях каждая химическая реакция самопроизвольно протекает в определенном направлении. Так, при низких температурах экзотермическая реакция образования парообразной воды 2Н2 + 02 = 2Н20 + 483,6 кДж практически нацело протекает в прямом направлении *. Но при высоких температурах эта реакция начинает идти в обратном направлении: водяной пар разлагается на водород и кислород. Во всех случаях в результате реакции может быть достигнуто состояние устойчивого химического равновесия, но само положение равновесия при разных условиях оказывается различным. Возникает вопрос: в чем причина определенной направленности химических процессов, какие факторы обусловливают то или иное состояние химического равновесия? Известно, что в механических системах устойчивое равновесие соответствует минимуму потенциальной энергии системы. Так, шарик самопроизвольно скатывается из положения а на наклонной поверхности (рис. 69), причем его потенциальная энергия переходит сначала в кинетическую энергию движения шарика как целого, .а затем в энергию теплового движения молекул. В положении б шарик находится в равновесии. Естественно предположить, что и химические процессы должны самопроизвольно протекать в направлении уменьшения внутренней энергии системы, т.е. в направлении, отвечающем положительному тепловому эффекту реакции. Действительно, опыт показывает, что при обычных условиях самопроизвольно протекают преимущественно экзотермические реакции. * В отсутствие катализатора скорость этой реакции при обычных условиях крайне мала. Однако при наличии катализатора (например, платинированного асбеста) процесс образования воды протекает с большой скоростью. Однако попытка объяснить направленность химических процессов только стремлением к минимуму внутренней энергии приводит к противоречиям с фактами. Так, уже при обычных температурах самопроизвольно протекают эндотермические процессы растворения многих солей и некоторые эндотермические химические реакции. С повышением температуры все большее число реакций начинает самопроизвольно протекать в направлении эндотермического процесса; примерами таких реакций могут служить упомянутое выше разложение воды или протекающий при высоких температурах синтез оксида азота(II); VaN2 + V2O2 +=± N0 — 90,4 кДж Более того, принцип стремления к минимуму внутренней энергии требует, чтобы все экзотермические реакции доходили до конца, т. е. исключает возможность обратимых реакций; однако такие реакции реально существуют. Вспомним теперь, что среди механических систем имеются такие, поведение которых тоже нельзя описать только направленностью процессов к достижению минимума потенциальной энергии. Это системы, состоящие из очень большого числа частиц. Например, молекулы, входящие в состав воздуха, распределяются вокруг Земли в виде атмосферы многокилометровой толщины, но не падают на Землю, хотя минимуму потенциальной энергии каждой молекулы соответствует наиболее низкое ее положение. Из громадного числа частиц состоят и химические системы. Поэтому неудивительно, что и здесь тенденция к достижению минимума внутренней энергии не является единственным фактором,, определяющим их поведение. Для того чтоб |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|