![]() |
|
|
Общая химиярегистрируется на фотопленке — получается рентгенограмма данного кристалла. Расшифровка ее, при известной длине волны применяемого излучения, приводит к определению расстояний между соседними плоскостями или, что то же самое, между соседними атомами (ионами) в кристалле данного вещества. Рентгеноструктурный анализ служит основным методом изучения строения твердых тел. В некоторых случаях используют дифракцию электронов (электронографический анализ), а также нейтронов. В настоящее время методами рентгеноструктурного анализа изучено строение десятков тысяч неорганических и органических веществ, имеющих практическое и научное значение^ Большие успехи достигнуты в расшифровке структур биологически важных веществ (например, гемоглобина). Благодаря применению методов рентгеноструктурного анализа устанавливается молекулярное строение наследственного вещества живых организмов. В зависимости от природы частиц, находящихся в узлах кристаллической решетки, и от того, какие силы взаимодействия между ними преобладают в данном кристалле, различают молекулярные, атомные, ионные и металлические решетки. В узлах молекулярных решеток находятся молекулы. Они связаны друг с другом межмолекулярными силами. В узлах атомных решеток находятся атомы; они связаны друг с другом ковалентной связью. В узлах ионных решеток располагаются, чередуясь, положительно и отрицательно заряженные ионы. Они связаны друг с другом силами электростатического притяжения. Наконец, в узлах металлических решеток находятся атомы металла, между которыми свободно движутся общие для этих атомов электроны. Металлические решетки рассматриваются в гл. XVI. Молекулярные и атомные решетки присущи веществам с ковалентной связью, ионные—ионным соединениям, металлические — металлам и их сплавам. Веществ, обладающих атомными решетками, сравнительно мало. К ним принадлежат алмаз, кремний и некоторые неорганические соединения. Эти вещества характеризуются высокой твердостью, они тугоплавки и нерастворимы практически ни в каких растворителях. Такие их свойства обусловлены прочностью кова-лентной связи. Веществ с молекулярной решеткой очень много. К ним принадлежат неметаллы, за исключением углерода и кремния, все органические соединения с неионной связью и многие неорганические вещества. Силы межмолекулярного взаимодействия значительно слабее сил ковалентной связи, поэтому молекулярные кристаллы имеют небольшую твердость, легкоплавки и летучи. К соединениям с ионной связью, образующим ионные решетки, относится большинство солей и небольшое число оксидов. По прочности ионные решетки уступают атомным, но превышают молекулярные. Ионные соединения имеют сравнительно высокие температуры плавления; летучесть их в большинстве случаев невелика. Существуют вещества, в кристаллах которых значительную роль играют два рода взаимодействия между частицами. Так, в графите атомы углерода связаны друг с другом в одних направлениях ковалентной связью, а в других—металлической. Поэтому решетку графита можно рассматривать и как атомную, и как металлическую. Во многих неорганических соединениях, например, в BeO, ZnS, CuCl, связь между частицами, находящимися в узлах решетки, является частично ионной и частично ковалентной; решетки подобных соединений можно рассматривать как промежуточные между ионными и атомными. Решетки различных веществ различаются между собой не только по природе образующих их частиц, но и по взаимному расположению частиц в пространстве — по своему строению. Каждую решетку можно охарактеризовать ее элементарной ячейкой— наименьшей частью кристалла, имеющей все особенности структуры данной решетки (см. рис. 61). Как видно, в кристалле NaCl каждый ион окружен шестью ближайшими ионами противоположного знака, а в кристалле CsCl — восемью. Это число ближайших частиц для той или иной частицы в кристалле называется ее координационным числом. Таким образом, координаци- Ш t cs+ о сг онное число иона Na+ и иона С1~ в кристалле NaCl равно 6, а ионов Cs+ и С1~ в кристаллах CsCl равно 8. В кристаллах обеих Рис. 61. Кристаллические решетки хлорида натрия (а) и хлорида цезия (б"). этих солей, а также других ионных соединений все связи каждого нона с ближайшими ионами противоположного знака равноценны, Отсюда следует, что понятие о молекуле неприменимо к кристаллическим веществам с ионной связью. Также неприменимо это понятие и к кристаллам с атомной или смешанной атомно-ионной структурой. В таких веществах, как алмаз, карборунд SiC, имеющих атомную решетку, или как ZnS, А1203, обладающих промежуточной атомно-ионной структурой, все связи каждого атома с ближайшими соседними атомами равноценны. 51. Реальные кристаллы. Описанная в § 50 внутренняя структура кристалла, характеризующаяся строгой пространственной периодичностью, представляет собой известную идеализацию. Исследование строения реальных кристаллов показало, что во всяком кристалле эта периодичность всегда несколько нарушена. В реальных кристаллах наблюдаются дефекты структуры. Число этих дефект |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|