![]() |
|
|
Общая химияглавным образом для двухвалентных металлов, имеют состав, отвечающий формуле М(Сг02)г» и представ- 228. Хром 635 ляют собой соли метахромистой кислоты НСт02. К ним относится и природный хромистый железняк Fe(Cr02)2. Из солей хрома(III) самой распространенной является двойная соль хрома и калия — хромокалиевые квасцы KCr(S04b* 12Н20, образующие сине-фиолетовые кристаллы. Хромокалиевые квасцы применяются в кожевенной промышленности для дубления кож и в текстильной промышленности в качестве протравы при крашении* Соли хрома(III) во многом похожи на солн алюминия. В вод* ных растворах они сильно гидролизованы н легко превращаются в основные соли. Со слабыми кислотами хром(III), подобно алюминию, солей не образует. Растворы солей хрома (III) обычно имеют сине-фиолетовый цвет, но при нагревании становятся зелеными, а спустя некоторое время после охлаждения снова приобретают прежнюю окраску. Это изменение окраски объясняется образованием изомерных гидратов солей, представляющих собой комплексные соединения, в которых все или часть молекул воды координационно связаны во внутренней сфере комплекса. В некоторых случаях такие гидраты удалось выделить в твердом виде. Так, кристаллогидрат хлорида хрома(III) СгС1з» • 6Н20 известен в трех изомерных формах: в виде сине-фиолетовых, темно-зеленых и светло-зеленых кристаллов одинакового состава. Строение этих изомеров можно установить на основании различного отношения их свежеприготовленных растворов к нитрату серебра. При действии последнего на раствор сине-фиолетового гидрата осаждается весь хлор; из раствора темно-зеленого гидрата осаждается 2/3 хлора, а из раствора светло-зеленого гидрата— только 1/3 хлора. Принимая во внимание эти данные, а также коорди* национное число хрома, равное шести, строение рассматриваемых кристаллогидратов можно выразить следующими формулами: [Сг(Н20)в]С1, [Сг(Н20)5С1]С12 • Н20 [Сг(Н20)4С12]С1 • 2Н20 сине-фиолетовый темно-зеленый светло-зеленый Таким образом, изомерия гидратов хлорида хрома(III) обусловлена различным распределением одних и тех же групп (Н20 и С1~) между внутренней и внешней координационными сферами и может служить примером гид-ратной изомерии (стр. 574). Соединения xpoMa(VI). Важнейшими соединениями хрома (VI) являются триоксид хрома, или хромовый ангидрид, Сг03 и соли отвечающих ему кислот — хромовой Н2СгС>4 и двухромовой Н2Сг207. Обе кислоты существуют только в водном растворе и при попытках выделить их из раствора распадаются на хромовый ангидрид и воду; но соли их достаточно стойки. Соли хромовой кислоты называются хроматами, а двухромовой — б и хрома* та ми или дихроматами. Почти все хроматы имеют желтую окраску. Некоторые из них применяются в качестве красок. Например, нерастворимый в воде хромат свинца РЬСг04, под названием желтый крон, служит для приготовления желтой масляной краски. При подкислении раствора какого-нибудь хромата, например хромата калия К2Сг04, чисто-желтая окраска раствора сменяется на оранжевую вследствие перехода ионов СЮ4" в ионы Сг207~\ Из полученного раствора может быть выделена соль двухромовой кислоты — дихромат калия К2СГ2О7 — в виде оранжево-красных кристаллов. Реакция превращения хромата в дихромат выражается уравнением: 2СЮГ + 2Н+ *=± Сг2ОГ + Н20 Реакция обратима. Это значит, что при растворении дихромата в воде всегда образуется некоторое, хотя и незначительное, количество ионов ЬП и Сг04~; поэтому раствор дихромата имеет кислую реакцию. Если к раствору дихромата прибавлять щелочь, то гкдрокснд-ионы будут связывать находящиеся в растворе ионы водорода, равновесие смещается влево и в результате дихромат превращается в хромат. Таки?у1 образом, в присутствии избытка гидроксид-ионов в растворе практически существуют только ионы CrOf~, т. е. хромат, а при избытке ионов водорода — ионы Сг20? т. е. дихромат. Хроматы щелочных металлов получаются путем окисления соединений хрома(III) в присутствии щелочи. Так, при действии брома на раствор хромита калия образуется хромат калия: 2К3[Сг(ОН)6] + 3Br2 -f- 4КОН = 2К2СЮ4 + 61<Вг + 8НаО О происходящем окислении можно судить по тому, что изумрудно-зеленая окраска раствора хромита переходит в ярко-желтую. Хроматы могут быть получены также сплавлением Сг203 со щелочью в присутствии какого-нибудь окислителя, например хлората калия: Сг203 + 4КОН + КСЮ3 = 2КаСг04 + КС1 + 2Н20 Хроматы и дихроматы — сильные окислители. Поэтому ими широко пользуются для окисления различных веществ. Окисление производится в кислом растворе и обычно сопровождается резким изменением окраски (дихроматы окрашены в оранжевый цвет, а соли хрома(Ш)—в зеленый или зеленовато-фиолетовый). Мы видели, что в кислых и в щелочных растворах соединения хрома(III) и хрома(VI) существуют в разных формах: в кислой среде в виде ионов Сг3+ или Сг20|~,а в щелочной — в виде ионов [Сг (ОН)6]3~ или Сг04~. Поэтому взаимопревращение соединений хрома(III) и хрома(VI) протекает по-разному в зависимости от реакции раствора. В кислой среде устанавливает |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|