![]() |
|
|
Общая химия(CuOH)2C03| + 2Na2S04 + C02f Применяется для получения хлорида меди(II), для приготовления синих и зеленых минеральных красок, а также в пиротехнике. Ацетат меди(\\) Си (СИ3СОО)2-Н20. Получается обработкой металлической меди или оксида меди (II) уксусной кислотой. Обычно представляет собой смесь основных солей различного состава и цвета (зеленого и сине-зеленого). Под названием ярь-медянка применяется для приготовления масляной краски. Смешанный ацетат-арсенитмеди(\\) Си(CH3COO)2-Cu3(As03)2. Применяется под названием парижская зелень для уничтожения вредителей растений. Из солей меди вырабатывают большое количество минеральных красок, разнообразных по цвету: зеленых, синих, коричневых, фиолетовых и черных. Все соли меди ядовиты, поэтому медную посуду лудят, т. е. покрывают внутри слоем олова, чтобы предотвратить возможность образования медных солей. Комплексные соединения меди. Характерное свойство двухзарядных ионоз меди —их способность соединяться с молекулами аммиака с образованием комплексных ионов. Если к раствору сульфата меди приливать раствор аммиака, то выпадает голубой осадок основной соли, который легко растворяется в избытке аммиака, окрашивая жидкость в интенсивный синий цвет. Прибавление щелочи к полученному раствору не вызывает образования осадка гидроксида меди Си(ОН)2; следовательно, в этом растворе так мало ионов Си2+, что даже при большом количестве ионов ОН- не достигается произведение растворимости Си(ОН)2. Отсюда можно заключить, что ионы меди всту* пают во взаимодействие с прибавленным аммиаком и образуют какие-то новые ионы, которые не дают нерастворимого соединения с ионами OIHK В то же время ионы S04~ остаются неизмененными, так как прибавление к аммиачному раствору хлорида бария тотчас же вызывает образование осадка сульфата бария (характерная рекция на ион S04~)- Исследованиями установлено, что темно-синяя окраска аммиачного раствора обусловлена присутствием в нем сложных ионов [Cu(NH3)4]2+, образовавшихся путем присоединения к иону меди четырех молекул аммиака. При испарении воды ионы [Cu(NH3)4)2+ связываются с ионами SQ4 и из раствора выделяются темно-синие кристаллы, состав которых выражается формулой [Cu(NH3)4]S04-H2G. Таким образом, при взаимодействии сульфата меди (И) с ам* миаком происходит реакция CuS04 + 4NH3 = [Cu(NH3)4]S04 или в ионной форме: Cu2+ + 4NH3^ [Cu(NH3)4]2+ Ионы, которые, подобно [Си (NH3)4]2+, образуются путем присоединения к данному иону нейтральных молекул или ионов противоположного знака, называются комплексными ионами. Соли, в состав которых входят такие ионы, получили название комплексных солей. Известны также комплексные кислоты, комплексные основания и комплексные неэлектролиты*. При написании формул комплексный ион обычно заключают в квадратные скобки. Этим отмечается, что при растворении данного соединения в воде комплексный ион практически не диссоциирует. Подобно сульфату меди (И) реагируют с аммиаком и другие соли двухвалентной меди. Во всех этих случаях получаются темно-синие растворы, содержащие комплексные ионы [Си (МНз)4]2+. Гидроксид меди(II) тоже растворяется в аммиаке с образова* нием темно-синего раствора, содержащего ионы [Си (NH3) 4]2+: Си(ОН)2 + 4NH3 - [Cu(NH3)4]2+ + 20Н~ Получающийся раствор обладает способностью растворять целлюлозу (вату, фильтровальную бумагу и т. п.) и применяется при изготовлении одного из видов искусственного волокна (см. стр. 480). Гидроксид меди (II) растворяется также в очень концентрированных растворах щелочей, образуя сине-фиолетовые растворы купритов — солей, содержащих комплексный ион [Си(ОН)4]2~ * Приведенное определение комплексных соединений не является исчерпьк вающим. Подробнее комплексные соединения рассматриваются в главе XVIIlt, Cu(OH)2 + 2NaOH ^=fc Na2[Cu(OH)4] или в ионной форме: Си(ОН)2 + 20Н~ ^=± [Си(ОН)4]2" В отличие от аммиачных комплексов меди, в этом случае ион меди присоединяет к себе не нейтральные молекулы, а ионы ОН~ вследствие чего образуются комплексные анионы, а не катионы. Куприты очень нестойки и при разбавлении щелочных растворов водой разлагаются, выделяя гидроксид меди(II) в осадок. Из других комплексных анионов меди (II) отметим ионы [СиСЦ]2-, образующиеся в концентрированных растворах хлорида меди(Н) и обусловливающие их зеленую окраску: CuCl2 + 2Cl" ^ [CuCl.]2" При разбавлении растворов водой ионы [СиС14]2-превращаются в обычные гидратированные ионы меди [Cu(H20)4]2+ и зеленая окраска растворов переходит в сине-голубую: [СиС14]2~ + 4Н20 =е=> [Cu(H20)4]2+ + 4СГ Медь принадлежит к числу микроэлементов. Такое название получили Fe, Си, Мп, Мо, В, Zn, Со в связи с тем, что малые количества их необходимы для нормальной жизнедеятельности растений. Микроэлементы повышают активность ферментов, способствуют синтезу сахара, крахмала, белков, нуклеиновых кислот, витаминов и ферментов. Микроэлементы вносят в почву с м и к р о у д о б р е н и я м и. Удобрения, содержащие медь, способствуют росту растений на некоторых малоплодоро |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|