![]() |
|
|
Общая химиязом, присутствие любой аммонийной соли в растворе можно обнаружить, нагревая раствор со щелочью (реакция на ион аммония). Соли аммония термически неустойчивы. При нагревании они разлагаются. Это разложение может происходить обратимо или необратимо. Соли аммония, анион которых не является окислителем или лишь в слабой степени проявляет окислительные свойства, распадаются обратимо. Например, при нагревании хлорид аммония как бы возгоняется — разлагается на аммиак и хлоро-водород, которые на холодных частях сосуда вновь соединяются в хлорид аммония: NH4C1 ^ Шз + НС{ При обратимом распаде солей аммония, образованных нелетучими кислотами, улетучивается только аммиак. Однако продукты разложения — аммиак и кислота, — будучи смешаны, вновь соединяются друг с другом. Примерами могут служить реакции распада сульфата аммония (NH4)2S04 или фосфата аммония (Nl-hbPO*. Соли аммония, анион которых проявляет более резко выраженные окислительные свойства, распадаются необратимо: протекает окислительно-восстановительная реакция, в ходе которой ион аммония окисляется, а анион восстанавливается. Примерами могут служить распад NH4NO2 (§ 136) или разложение нитрата аммония: NH4NO3 = N2Of + 2Н20 Аммиак и соли аммония находят широкое применение. Как уже говорилось, аммиак даже при невысоком давлении (0,7— 0,8 МПа) легко превращается в жидкость. Поскольку при испарении жидкого аммиака поглощается большое количество теплоты (1,37 кДж/г), то жидкий аммиак используется в различных холодильных устройствах. Водные растворы аммиака применяются в химических лабораториях и производствах как слабое легколетучее основание; их используют также в медицине и в быту. Но большая часть получаемого в промышленности аммиака идет на приготовление азотной кислоты, а также других азотсодержащих веществ. К важнейшим из них относятся азотные удобрения, прежде всего сульфат и нитрат аммония и карбамид (стр. 427). Сульфат аммония (NH4)2S04 служит хорошим удобрением и производится в больших количествах. Нитрат аммония NH4N03 тоже применяется в качестве удобрения; процентное содержание усвояемого азота в этой соли выше, чем в других нитратах или солях аммония. Кроме того, нитрат аммония образует взрывчатые смеси с горючими веществами (аммоналы), применяемые для взрывных работ. Хлорид аммония, или нашатырь, NH4C1 применяется в красильном деле, в ситцепечатании, при паянии и лужении, а также в гальванических элементах. Применение хлорида аммония при паянии основано на том, что он способствует удалению с поверхности металла оксидных пленок, благодаря чему припой хорошо пристает к металлу. При соприкосновении сильно нагретого металла с хлоридом аммония оксиды, находящиеся на поверхности металла, либо восстанавливаются, либо переходят в хлориды. Последние, будучи более летучи, чем оксиды, удаляются с поверхности металла. Для случая меди и железа основные происходящие при этом процессы можно выразить такими уравнениями: 4CuO + 2NH4C1 = ЗСи -f СиС12 + N2 -f 4Н20 Fe304 + 8NH4CI = FeCl2 + 2FeCl3 + 8NH3 + 4H20 Первая из этих реакций является окислительно-восстановительной: медь, будучи менее активным металлом, чем железо, восстанавливается аммиаком, который образуется при нагревании NH4CI. Жидкий аммиак и насыщенные им растворы аммонийных солей применяют в качестве удобрений. Одним из главных преимуществ таких удобрений является повышенное содержание в них азота. 138. Фиксация атмосферного азота. Получение аммиака. До конца прошлого столетия аммиак получался в промышленном масштабе исключительно как побочный продукт при коксовании каменного угля. Каменный уголь содержит от 1 до 2 % азота. При сухой перегонке угля почти весь этот азот выделяется в виде аммиака и солей аммония. Отделение аммиака и солей аммония от других газообразных продуктов сухой перегонки достигается пропусканием коксового газа через воду. Из этой аммиачной или, как ее называют, газовой воды аммиак выделяется при нагревании с известью. Долгое время газовая вода служила единственным источником получения аммиака. Но в начале XX века были разработаны новые промышленные способы получения аммиака, основанные на связывании или, как говорят, фиксации атмосферного азота. Чтобы оценить, какое огромное значение для человечества имели эти открытия, нужно ясно представить себе роль азота в жизненных процессах. Как мы уже говорили, азот—обязательная составная часть белков; он необходим для питания всякого живого существа. Однако, несмотря на огромные, практически неисчерпаемые запасы свободного азота в атмосфере, ни животные, ни растения (за не- большими исключениями) не могут непосредственно пользоваться этим азотом для питания. Растения берут азот из почвы, где он содержится главным образом в виде различных органических соединений, которые постепенно превращаются в соли азотной кислоты и соли аммония. Растворяясь во влаге почвы, эти соли поглощаются корнями растений, а затем перерабатываются в их клетках в белки. Животные не могут усваивать азот даже в виде солей. Для питан |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|