![]() |
|
|
Общая химиярующимися. В результате на колонке образуется проявленная хромато-грамма (рис. 98,6). М. С. Цвет применил этот метод для разделения на адсорбентах белого цвета (мел, оксид кальция, крахмал, целлюлоза) смеси пигментов листьев растений. Проявленная хро-матограмма расцвечивалась зонами разнообразной окраски. Отсюда возникло название предложенного М. С. Цветом метода — хроматография («цветозапись» от греч. «хромое» — цвет, «графе» — писать). Продолжая промывание колонки растворителем, достигают выхода из нее разделяющихся веществ, которые обнаруживают путем анализа последовательных порций вытекающего из колонки раствора (элюата). Если построить выходную кривую, т.е. график зависимости концентрации элюата (С) от объема пропущенного через колонку раствора (V), то па этой кривой выходу Компонентов исходной смеси из колонки соответствуют хромато-графические пики (рис. 98, в). Часто не происходит полного разделения компонентов и отдельные пики взаимно перекрываются. Построение выходных кривых является наиболее распространенной формой колоночной хроматографии, так как не связано ни с окраской разделяемых компонентов, ни с цветом адсорбента. В 1936 г. М. М. Дубинин осуществил адсорбционную хроматографию паров; в последующие годы появились новые варианты хроматографического метода, В настоящее время хроматографией называют такие физико-химические методы разделения компонентов смесей газов, паров, жидкостей или растворенных веществ, которые осуществляют путем сорбции в динамических условиях. В зависимости от преобладающего физико-химического сорбциониого процесса, определяющего разделение компонентов смеси, различают хроматогра- фпю адсорбционную, ионообменную и распределительную. Разделяемые компоненты могут находиться в подвижной жидкой пли газовой фазе, а неподвижная фаза может быть как твердой, так и жидкой. Зерна адсорбента или ионита могут заполнять колонну (колоночная хроматография) или составлять тонкий плотный слой на стеклянной пластинке (тонкослойная хроматография). Создание и совершенствование хроматографических методов исследования в значительной степени обусловило быстрые темпы развития современной молекулярной биологии, химии редкозе-» мельных и трансурановых элементов. Хроматографические методы выделения и разделения разнообразных веществ осуществлены также в крупных промышленных масштабах. Большое значение для анализа очень малых объемов растворов (0,01—0,1 мл) приобрела распределительная хроматография на бумаге, предложенная Консденом (Англия) в 1944 г. Она основана на том, что между двумя несмешивающимися жидкостями третий компонент распределяется в соответствии с характерным для этого вещества коэффициентом распределения, представляющим отношение его концентраций в граничащих жидкостях (закон распределения, см. § 76). Для осуществления хроматографического процесса необходимо, чтобы один слой жидкости перемещался относительно другого. В этом случае распределение растворенных веществ между двумя слоями жидкости происходит многократно в динамических условиях. При хроматографии на бумаге одна, более полярная жидкость сорбируется волокнами бумаги, образуя фиксированную (неподвижную) жидкую фазу; другая, менее полярная жидкость, смачивая волокна бумаги, поднимается по листу в силу явления капиллярного поднятия. На рис. 99 показана, схема распределительной хроматографии на бумаге («восходящая хроматография»). На стартовую линию полости хроматографической бумаги раздельно наносят по капле исследуемого раствора смеси веществ (А + Б) и предполагаемого компонента смеси — «свидетеля» (рис. 99,7). Нижний край полоски бумаги погружают в растворитель. Когда фронт растворителя почти достигнет верхнего края полоски бумаги, пройдя путь Ьф (рис. 99,//), компоненты исходной смеси, при правильно подобранной системе растворителей, разделяются на ряд пятен, которые выявляют соответствующими цветными реакциями на ожидаемые компоненты и сравнением с положением пятен «свидетелей». Путь, пройденный компонентом А исходной смеси (La), определяется коэффициентом распреде- Рис. 99. Восходящая распределительная хроматография на бумаге, ления для данного вещества. Относительная величина этого пут:? La/L^, обозначаемая R[a, является характерной для каждого вещества в определенной системе растворителей. 112. Электрокинетические явления. Электрскинетическими явлениями называют перемещение одной фазы относительно другой в электрическом поле и возникновение разности потенциалов при течении жидкости через пористые материалы (потенциал протекания) или при оседании частиц (потенциал оседания). Перенос коллоидных частиц в электрическом поле называется электрофорезом, а течение жидкости через капиллярные системы под влиянием разности потенциалов — электроосмосом. Оба эти явления были открыты профессором Московского университета Ф. Ф. Рейс-сом в 1809 г. Электрокинетические явления свидетельствуют о том, что на границе раздела фаз возникает двойной электрически й ело й, представляющий собой тонкий поверхностный слой |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|