![]() |
|
|
Общая химияизготовляет ряд марок силикагеля с различным размером и распределением пор. В отличие от поверхности жидкостей, не все точки поверхностей твердых тел равноценны в отношении их адсорбционной способности. При малых концентрациях газов адсорбция происходит мо-. номолекулярно по наиболее активным участкам адсорбента — его «активным центрам», представляющим собой отдельные атомы или группы атомов поверхности, силовое поле которых наименее насы-. щено. При адсорбции газов, находящихся при температурах ниже их критической температуры, мономолекулярная адсорбция с увеличением давления может переходить в полимолекулярную. Повышение температуры и понижение давления приводят к десорбции газов и паров. Вследствие этого сорбционно-десорбцион-ные методы широко применяют в промышленности для извлечения различных веществ из воздушной среды, а также для разделения газов и паров. * Николай Дмитриевич Зелинский (1861 —1953), академик, Герой Социалистического Труда, основатель крупной школы химиков-органиков, Ему принадлежат классические работы в области органического катализа, а также по химии нефти и получению из нее многих ценных продуктов. ** Михаил Михайлович Дубинин (род. 1901 г.) — академик, лауреат Государственных премий, глава крупной научной школы в области сорбции. Внес большой вклад в разработку современных представлений о механизме борбции газов и паров, а также методов получения и исследования сорбентов* При адсорбции растворенных веществ из растворов на твердых адсорбентах всегда, в той или иной степени, происходит также адсорбция растворителей. Поэтому адсорбция из растворов носит конкурентный характер между поглощением растворенных веществ и растворителя. Адсорбироваться могут как растворенные неэлек-тролиты, так и электролиты. В связи с этим различают молекулярную и ионную адсорбцию из растворов. С целью уменьшения адсорбции растворителя при молекулярной сорбции из водных растворов обычно применяют гидрофобный адсорбент — активный уголь, а при сорбции из неполярных растворителей (углеводородов) гидрофильный адсорбент — силикагель. Адсорбция протекает по активным центрам адсорбента, часто мо-номолекулярно и высокоизбирательно. Изотермы молекулярной адсорбции из растворов, так же как газов и паров, имеют вид кривой, приведенной на рис. 96. Десорбцию, осуществляемую с помощью жидкостей, обычно называют элюцией, а жидкости или растворы, применяемые для этих целей, элюентами. Сорбция может происходить в статических или в динамических условиях. Сорбцию называют статической, когда поглощаемое вещество (сорбтив), находящееся в газообразной или жидкой фазе, приведено в контакт с неподвижным сорбентом или перемешивается с ним. Статическую активность сорбента характеризуют количеством поглощенного вещества на единицу массы сорбента в определенных условиях. Динамической сорбцию называют в том случае, когда поглощаемое вещество находится в подвижной жидкой или газообразной фазе, которая фильтруется через слой сорбента. Динамическую активность адсорбента характеризуют временем от начала пропускания адсорбтива до его проскока, т. е, до появления его за слоем адсорбента (Н. А. Шилов, 1917 г.). В промышленности сорбционпо-десорбционные процессы, как правило, осуществляют в динамических условиях, так как это обеспечивает непрерывность технологических процессов и возможность их автоматизации. ПО. Ионообменная адсорбция. При адсорбции электролитов преимущественно адсорбируются или катионы, или анионы, которые заменяются на эквивалентное количество ионов того же знака из адсорбента. Раствор остается при этом электронейтральным. Таким образом, адсорбция электролитов происходит путем экви* валентного обмена ионов одинакового знака, а потому получила название ионообменной адсорбции. Ионообменный механизм адсорбции электролитов первоначально был подмечен агрономами и почвоведами при вытеснении одних ионов почвенных электролитов другими. К. К. Гедройц* доказал (1918 г.) эквивалентность обмена катионов в почвах и создал учение о почвенном поглощающем комплексе (высокодисперсной органоминеральной части почвы), обусловливающем способность почв удерживать необходимые растениям растворимые соли в доступной для корневого питания форме. Неорганические и органические материалы, способные к обмену ионов, получили название ионитов. Их делят на катиониты (для обмена катионов) и аниониты (для обмена анионов). Разнообразные синтетические ионообменные материалы химической промышленностью выпускаются в виде зернистых порошков, волокон и мембран. , _ , ,— ? ? * Константин Каэтанович Гедройц (1872—1932) — академик^ лауреат Ленинской премии, крупнейший почвовед-агрохимик. Основоположник учения о почвенном поглощающем комплексе и его роли в плодородии почв\ автор многих методов химического анализа почв. Рис. 97. Схема ионного обмена в зернах катнонита (а) и акиокита (О"). Потенциалопределяющне — ионо-генные гр\ппьз, химически связанные с каркасом цонита: соответственно 3 п ©? Катионит в Н + -фор_м^, Ка+СГ- аннояит в ОН~-ф |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|