![]() |
|
|
Общая химияницах раздела фаз происходят в направлении уменьшения свободной поверхностной энергии. Следовательно, положительная адсорбция, приводящая к повышению концентрации вещества в пограничном слое, возможна только в том случае, если при этом уменьшается величина поверхностного натяжения. Рассмотрим взаимосвязь поверхностного натяжения растворов с адсорбцией на границе раздела жидкость)газ. Поверхностное натяжение растворов зависит от природы растворителя и растворенного вещества, от концентрации последнего и от температуры. Зависимость поверхностного натяжения растворов при постоянной температуре от концентрации растворенного вещества называют изотермой поверхностного натяжения. Растворенные вещества или понижают поверхностное натяжение растворителя, и в таком случае их называют поверхностно-активными веществами (ПАВ), или повышают поверхностное натяжение (поверхност-но-инактивные вещества), или не влияют на величину поверхностного натяжения растворителя (рис. 95). В водных растворах поверхностно-активны полярные органические соединения (спирты, кислоты, амины, фенолы). Поверхностно-инактивно большинство сильных электролитов. Поверхностно-активные вещества делятся на две большие подгруппы: 1) истинно растворимые в воде и 2) мицеллярные коллои- Рис. 95. Изотермы поверхностного натяжения растворов (а—поверхностное натяжение, С — концентрация раствора): /, 2 — растворы поверхностно-активных веществ (ПАВ) с большей (1) и меньшей (2) поверхностной активностью; 3 — раствор поверхностно-активного вещества, Рис. 9S. Изотерма поверхностного нз- § бытка (Г) в растворах поверхностно- / активного вещества, Л Структура поверхностного слоя: а — чистый растворитель; б — ненасыщенный моиомолекулярный слой ПАВ; в — насыщенный мономолекулярный слой ПАВ. КЗ ды. ПАВ первой подгруппы представляют сооои ди- фильные молекулы с корот* fer^ ————~—— .. f1 кими углеводородными ра ч^-— дикалами, а ПАВ второй подгруппы—дифильные молекулы с длинными углеводородными радикалами, малорастворимые в воде. Разность концентраций растворенного вещества в поверхностном слое и в таком же слое внутри объема раствора называют поверхностным избытком этого вещества и обозначают греческой буквой Г («гамма»). ПАВ положительно адсорбируются в поверхностном слое и, следовательно, для них Г > 0, поскольку это приводит к уменьшению поверхностного натяжения. Напротив, по-верхностно-инактивные вещества адсорбируются отрицательно, т. е. их концентрация в поверхностном слое меньше, чем в объеме раствора (Г<0). При этом поверхностное натяжение несколько возрастает в результате того, что в растворах сильных электролитов поверхностные молекулы воды втягиваются внутрь раствора с большей силой, чем в чистой воде. Пример изотермы адсорбции для поверхностно-активного вещества показан на рис, 96. Как видно, с увеличением концентрации раствора Г достигает предельного значения (Г«>), когда весь поверхностный слой занят молекулами ПАВ, вытеснившими молекулы растворителя. В таких насыщенных мономолекулярных поверхностных слоях молекулы ПАВ правильно ориентированы — своей полярной группой к полярной фазе (например, воде), а неполярным углеводородным радикалом — к неполярной фазе (например, воздуху), образуя подобие частокола. Аналогично изменяется пограничное натяжение и происходит адсорбция третьего компонента на границе двух несмешивающихся жидкостей. Адсорбция газов и паров на поверхности твердых тел также происходит в результате уменьшения свободной поверхностной энергии. Ввиду трудности измерения поверхностного натяжения твердых тел, об адсорбции на них судят, непосредственно определяя количество адсорбированного вещества. Последнее тем больше, чем больше поверхность адсорбента. Поэтому для осу* ществления адсорбционных процессов весьма важно создание высокопористых адсорбентов с развитой внутренней поверхностью, которую характеризуют удельной поверхностью, т. е. поверхностью, приходящейся на 1 г сорбента. Важнейшими пористыми сорбентами являются активный уголь и силикагель. Поглощающая. с способность угля подмечена еще в XVIII веке. Однако лишь в 1915 г. Н. Д. Зелинский* разработал способ получения активных углей, предложив их в качестве универсальных поглотителей отравляющих веществ, и совместно с Э. Л. Кумантом сконструировал угольный противогаз с резиновой маской. Один из первых способов активирования древесного угля состоял в обработке его перегретым паром для удаления смолистых веществ, образующихся при сухой перегонке древесины и заполняющих поры в обычном угле. Современные методы получения и исследования активных углей в нашей стране разработаны М. М. Дубининым **. Удельная поверхность активных углей достигает 1000 м2 на грамм. Активный уголь является гидрофобным адсорбентом, плохо поглощает пары воды и очень хорошо — углеводороды. Для поглощения паров воды широко применяют гидрофильный адсорбент, представляющий собой аэрогель обезвоженной кремниевой кислоты и получивший название с ил и к а геля. Промышленность |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|