![]() |
|
|
Общая химияперсионный анализ состоит в определении размеров частиц и удельной поверхности дисперсной фазы, а в случае полидисперсньгх систем также в установлении распределения диспергированного вещества по фракциям различного размера. Простейшим методом дисперсионного анализа является ситовой анализ, состоящий в рассеве исследуемого образца через сита с определенными размерами отверстий. Определив массу каждой из фракций, находят распределение исследуемого образца по фракциям разного размера. Ситовой анализ позволяет анализировать порошки до 60 мкм в поперечнике. Методы дисперсионного анализа более высокодисперсных систем основываются на их оптических и молекулярно-кинетических свойствах. Взаимодействие света с веществом зависит от соотношения длины волны света и размеров частиц, на которые падает световой поток. Это взаимодействие происходит по законам геометрической оптики (отражение, преломление), если размеры объекта больше Рис. 92. Схема поточного ультра-Микроскопа Б. В. Дерягина а Г, Я. Власенко: 1 — кювета; 2 —исючник света; 3 — лннза; 4 — тубус микроскопа. длины волны света. Если размеры частиц меньше половины длины волны света, то происходит рассеивание света в результате его дифракции. Область видимого света характеризуется длиной волн от 760 до 400 нм. Поэтому в молекулярных и коллоидных системах видимый свет рассеивается, а в проходящем свете эти растворы прозрачны. Наибольшей интенсивности рассеивание света достигает в коллоидных системах, для которых светорассеяние является характерной качественной особенностью. Обнаружение в растворе пути луча источника света при рассматривании раствора перпендикулярно к направлению этого луча позволяет отличить коллоидный раствор от истинного. На этом же принципе основано устройство ультрамикроскопа, в котором наблюдения проводят, в отличие от обычного микроскопа, перпендикулярно направлению проходящего через объект света. Схема по« точного ультрамикроскопа Б. В. Дерягина и Г. Я. Власенко приведена на рис. 92. С помощью этого прибора определяют концен-трацию дисперсных частиц в аэрозолях и коллоидных растворах. Форму коллоидных частиц, вирусов, многих макромолекул, включая молекулы более крупных белков, впервые оказалось возможным увидеть на флуоресцирующем экране и сфотографировать с помощью электронного микроскопа, изобретенного в конце 30-х годов XX века. Длина волны потока электронов при достаточной ускоряющей разности потенциалов имеет порядок 10_,° м„ что меньше размеров коллоидных частиц. Поэтому взаимодействие потока электронов с коллоидными частицами происходит по, законам геометрической оптики *. На рис. 93 показаны пределы применимости оптических методов исследования дисперсных систем. Коллоидные частицы проходят через бумажные фильтры, но задерживаются ультрафильтрами (мембранными фильтрами), представляющими собой гели полимеров в виде пленок. Зная радиус пор ультрафильтров, можно оценить размер коллоидных частиц. Молекулярно-кинетическими называют те свойства, которые связаны с хаотическим тепловым движением частиц, образующих те или иные системы. Различия в молекулярно-кине-тическом поведении молекулярно-, коллоидно- и микроскопически-дисперсных систем зависят от размеров частиц, образующих эти системы, и носят количественный характер. * Максимальное увеличение электронного микроскопа достигает 600 000 раз, а светового только 1500 раз, К молекулярно-кинетическим свойствам дисперсных систем относятся броуновское движение, диффузия и седиментация. Броуновским движением называется беспорядочное, хаотичное — подобно рою комаров, пляшущих в солнечном луче,—? движение коллоидно- и микроскопически-дисперсных частиц. Это явление получило название по имени ,английского ботаника Р. Броуна, впервые в 1827 г. обнаружившего под микроскопом непрерывные колебательные движения пыльцы растений в ее взвеси в воде. А. Эйнштейн в 1905 г. и независимо от него польский физик М. Смолуховский в 1906 г. развили молекулярно-статнстическую теорию броуновского движения, доказав, что оно является видимым под микроскопом отражением невидимого теплового, хаотичного движения молекул дисперсионной среды. Интенсивность броуновского движения тем больше, чем менее скомпенсированы удары, которые получает одновременно частица со стороны молекул среды; она возрастает с повышением температуры, уменьшением размеров частиц и вязкости среды. Для частиц крупнее 1—3 мкм броуновское движение прекращается. В конце первого десятилетия XX века Жан Перрен, исследуя броуновское движение сферических частиц, вычислил по уравнению Эйнштейна —? Смолуховского число Авогадро, оказавшееся в хорошем согласии с его значениями, найденными другими методами. Тем самым была доказана справедливость молекулярно-статистической теории броуновского движения и подтверждена реальность существования молекул дисперсионной среды, находящихся в непрерывном тепловом хаотическом движении. В настоящее время наблюдения за броуновским движением используют для определения размеров дисперсных частиц. Скорос |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|