![]() |
|
|
Общая химиявора, лежащих в определенном интервале, характерном для ? данного вида растения. Свойства природных вод, в частности их коррозионная активность, сильно зависят от их рН, 9i. Смещение ионных равновесий. Равновесие в растворах электролитов, как и всякое химическое равновесие, сохраняется неизменным, пока определяющие его условия не меняются; изменение условий влечет за собой нарушение равновесия. Так, равновесие нарушается при изменении концентрации одного из участвующих в этом равновесии ионов: при ее \ увеличении происходит процесс, в ходе которого эти ионы связываются. Например, если в раствор уксусной кислоты, диссоциирующей согласно уравнению СН3СООН Н+ + СН3СОО" ввести какую-либо соль этой кислоты и тем самым увеличить концентрацию ионов СН3СОО~, то, в соответствии с t принципом Ле Шателье, равновесие смещается влево, т. е. степень диссоциации уксусной кислоты уменьшается. Отсюда следует, что введение в раствор слабого электролита одноименных ионов (т. е. ионов, одинаковых с одним из ионов электролита) уменьшает степень диссоциации этого электролита. Наоборот, уменьшение концентрации, одного из ионов вызывает диссоциацию нового количества молекул. Например, при введении в раствор указанной кислоты гидроксид-ионов, связывающих ионы водорода, диссоциация кислоты, возрастает. Аналогично нарушается равновесие в случае малорастворимого электролита: всякий раз, как только произведение концентраций ионов малорастворимого электролита в растворе превысит величину произведения растворимости, i образуется осадок. Так, если к насыщенному раствору сульфата кальция добавить другой, хорошо растворимый электролит, содержащий общий с сульфатом кальция ион, например, сульфат калия, то вследствие увеличения концентрации ионов SOt" равновесие сместится в сторону образования кристаллов CaS04; ионы Са2+ и SO?~ будут удаляться из раствора, образуя осадок. Процесс будет идти до тех пор, пока произведение концентраций этих ионов станет равно произведению растворимости CaS04. В итоге количество сульфата кальция в растворе уменьшится. Таким образом, растворимость электролита уменьшается от введения в раствор одноименных ионов. Исключением являются те случаи, когда происходит связывание одного из находящихся в растворе ионов с вводимыми ионами в более сложные (комплексные) ионы (см, гл. XVIII). На основании рассмотренных примеров можно сделать общий вывод. Обязательным условием течения реакций между электролитами является удаление из раствора тех или иных ионов ~~ например, вследствие образования слабо диссоциирующих веществ или ее-ществ, выделяющихся из раствора в виде осадка или газа. Иначе говоря, реакции в растворах электролитов всегда идут в сторону образования ? наименее диссоциированных или наименее растворимых веществ. Из этого, в частности, следует, что сильные кислоты вытесняют слабые из растворов их солей. Например, при взаимодействии ацетата натрия с соляной кислотой реакция практически нацело протекает с образованием уксусной кислоты CHgCOONa + НС1 = СНзСООН + ХаС1 или в ионно-молекулярной форме: СНзСОО" + н+ = СН3СООН Аналогично протекают реакции между сильными основаниями и солями слабых оснований. Например, при действии гидроксида натрия на сульфат железа (II) выделяется гидроксид железа (II) FeS04 + 2NaOH = Na2S04 -f Fe(OH)2J, или в ионно-молекулярной форме: Fe2+ + 20Н~ =* Fe(OH)2| Последняя реакция служит примером образования не только слабого, но и малорастворимого электролита. С рассмотренной точки зрения становится ясным различие между реакциями нейтрализации сильной кислоты сильным основанием и случаями нейтрализации, когда хотя бы одно из исходных веществ — слабый электролит. При нейтрализации сильной кислоты сильным основанием в растворе образуется только один слабый электролит — вода. При этом равновесие Н+-ЬОН~ Н20 сильно смещено вправо и реакция в этом случае доходит практически до конца. При нейтрализации же слабой кислоты или ела-; бого основания в растворе существуют, по крайней мере, два сла^ бых электролита — вода и слабая кислота или слабое основание. Например, при нейтрализации уксусной кислоты сильным основанием в растворе устанавливаются два равновесия:" Н+ + СНзСОО" ^=fc СНзСООН и Н+ + ОН' z<=± Н20 Ион водорода может, таким образом, связаться в молекулу уксусной кислоты или в молекулу воды. Ионы СН3СОО~ и ОН-как бы «конкурируют» друг с другом в связывании иона водорода. Поэтому в данном случае реакция нейтрализации доходит не до конца, а до состояния равновесия: СНзСООН + ОН" СНзСОО" + Н20 Однако это равновесие сильно смещено вправо, поскольку вода — значительно более слабый электролит, чем уксусная кислота, так что связывание ионов Н+ в молекулы воды происходит полнее, чем в молекулы уксусной кислоты. При нейтрализации слабого основания — гидроксида аммония— сильной кислотой з растворе тоже устанавливаются два равновесия: NH4+ +ОН" ^=fc NH4OH и Н+ + ОН~ =^ Н20 Здесь конкурируют ионы NHf и Н+, связывающие гидрокс |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|