![]() |
|
|
Биоорганическая химия ферментативного катализапептидазы и в механизмах декарбоксилирования под действием металлозависимых ферментов и ферментов, действующих через основание Шиффа, является отражением различия в восприимчивости карбонилсодержащих соединений к кислотному и основному катализу. Нуклеофильные и основные свойства боковых цепей белковой молекулы вполне достаточны для проявления ферментом каталитической активности, тогда как ионы металлов являются гораздо более эффективными кислотными катализаторами по сравнению с протонами, о чем убедительно свидетельствует пример металлоферментов. Другая причина широкой распространенности металлоферментов связана, вероятно, с полидентатным характером комплексов металлов. Строго определенное пространственное расположение нескольких реагентов внутри одного и того же комплекса позволяет легко оптимизировать действие эффектов сближения и ориентации. 6.6. Ферментативный перенос протона: металлоферменты Протекание большого числа ферментативных реакций невозможно в отсутствие ионов металлов, активно участвующих в каталитическом процессе. Природа ионов металлов, необходимых для проявления ферментативной активности, варьируется в широких пределах — от ионов щелочных металлов Na+ и К+ и двухзарядных ионов Са2+, Mg2+, Zn2+, Fe2+, Cu2+, Co124" и Ni2+ до редко встречающихся многозарядных ионов ванадия и молибдена. Ионы металлов могут выполнять чисто структурные функции, однако чаще они прочно связаны с активным центром, принимая непосредственное участие в каталитической реакции. В этом случае роль иона металла может сводиться к стереоспецифическому образованию комплекса с молекулой субстрата, например с ее фосфатной группой. При катализе окислительно-восстановительными ферментами ион металла выступает в качестве переносчика электронов, осуществляя обратимый переход между двумя состояниями окисления. Однако чаще всего непосредственно участвующий в ферментативной реакции ион металла выполняет, как и в обычных органических реакциях, роль кислоты Льюиса, которая действует аналогично протону, но с большей эффективностью (т. е. является суперкислотой, см. гл. 9). В таких реакциях всегда наблюдается одновременный перенос протона между ферментом и субстратом, поэтому в некотором смысле их можно рассматривать как катализируемый ионами металла ферментативный перенос протона. В качестве примера рассмотрим механизм реакции, катализируемой карбоксипептидазой. Карбоксипептидаза — это металлофермент, содержащий один атом цинка на молекулу белка. Карбоксипептидаза катализирует гидролиз С-концевой пептидной связи в белках и олигопеп-тидах и сложных эфиров а-оксикислот. Кинетический изотопный эффект растворителя равен 2 при гидролизе сложноэфир-ного субстрата О-(гранс-циннамоил)-ь-р-фениллактата и всего лишь 1,33±0,15 при гидролизе пептида N- (N-бензоилглицил)-L-фенилаланината [11]. По данным рентгеноструктурного анализа карбоксипептидаза представляет собой глобулярный белок, в котором содержится один атом цинка, координированный двумя остатками гистидина. Кроме того, в состав активного центра входят карбоксильная (Glu-270), фенольная (Туг-248) и гуанидиновая (Arg-145) группы. Последняя образует ионную связь со свободной карбоксильной группой субстрата. Простейший механизм, согласующийся со всеми имеющимися к настоящему времени структурными и кинетическими данными, представлен на рис. 6.5 [11, 12]. Реакция протекает через промежуточный ацилангидрид с одновременным отщеплением концевой карбоновой кислоты. На второй стадии происходит быстрая реакция ацилангидрида с водой. Возможно, что фенольная группа Туг-248 на стадии деаци-лирования действует как общее основание, отрывая протон от молекулы воды, а на первой стадии — даже как общая кислота, отдавая протон уходящей группе. Возможен также альтернатив(GLU-270) (ARG-145) R2-CO 0-CHR,-C02Комплекс Михаилuca TL ) i t i CRJ-O-CHR^CCV C + (NH2)2 + HO CHR, CO," CRZ TI'H«° E + RJC02~ Рис. 6.5. Механизм действия карбоксипептидазы [1]. ный механизм, в котором функцию общего основания выполняет остаток Glu-270 [13]. Точные экспериментальные доказательства того или другого механизма в настоящее время отсутствуют. Ясно, однако, что роль иона металла сводится к тому, что он, действуя как общая кислота, обеспечивает поляризацию карбонильной группы и одновременно вносит вклад в обеспечение жесткой ориентации пептидной или сложноэфирной связи, которая требуется для образования показанного на схеме тетраэдрического промежуточного соединения. Необходимость поляризации обусловлена тем, что атакующий карбоксилат-ион является слабым нуклеофилом. Ион металла, по-видимому, не принимает непосредственного участия в переносе протона и не взаимодействует с другими участвующими в реакции донорами или акцепторами протона. Более подробно металлоферменты рассмотрены в гл. 9. 6.7. Ферментативный перенос протона: рацемаза миндальной кислоты Насколько можно судить по имеющимся к настоящему времени данным, катализ рацемазой миндальной кислоты осуществляется по простейшему ферментативному м |
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
Скачать книгу "Биоорганическая химия ферментативного катализа" (2.87Mb) |
[каталог] [статьи] [доска объявлений] [прайс-листы] [форум] [обратная связь] |
|
Введение в химию окружающей среды. Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.
Химия и технология редких и рассеянных элементов. Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В
третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.
|
|